Visualization in the Real World: Confluence of Visualization and Augmented Reality

Dieter Schmalstieg
Graz University of Technology
Austria
http://dieterschmalstieg.me

What Makes Augmented Reality Interesting?

- Overlays real world with computer graphics
- Runs with headsets, handhelds, projectors
- Low latency, tracked, blended graphics
- Work anywhere, indoors + outdoors
- Natural user interface, ease of use

[Langlotz, Ngyuen, Schmalstieg, Grasset, 2014]

What Makes Visualization Interesting?

- VIS provides insight
 - Abstract data made visually accessible
 - Information workers, support cognition

• Not so much about **presence** (being there)

(Sankey diagram, Minard 1869)

- Rather about cognition (perceiving, understanding, deciding)
- But: spatial understanding is an important part of cognition
 - Spatial understanding aids cognition
 - Need for spatial understanding motivates the use of VR/AR!

s1 schmalstieg@tugraz.at, 8 Feb 2021

How are AR and Visualization Connected?

- Focus on intelligence amplification (IA) rather than artificial intelligence (AI)
 - W. Ross Ashby: Introduction to Cybernetics, 1956
 - IA sometimes also called **cognitive** <u>augmentation</u>
- Where is IA used?
- IA as killer app for mobile phones
 - Wikipedia, mobile google search, maps, QR codes
- IA as killer app for AR
 - AR as a natural user interface (not a symbolic user interface, as on desktop)
 - AR as a **medium** that makes us appear (or actually be) smart
 - No more need to take out your phone and swipe through the app list

What is the Overlap of AR and VIS?

How can we realize the intelligence amplification using AR + VIS?

Immersive Visualization

VR + VIS

Immersive visualization

- Let's first combine VIS and VR
- We get a spatially registered visualization
 - Left is left, right is right
 - Can reach out and touch the data
 - Can use sense of body, proprioception
 - Can use 3D direct interaction
- But meaning of physical space is arbitrary
 - Visualization only relates to itself
 - Hence, we call it **virtual** or **immersive**

ImAxes [Cordeil, Cunningham, Dwyer, Thomas, 2017]

Situated Visualization

- In reality, user perceives referents
 - [Willet, Jansen, Dragicevic, TVCG 2016]
- Referent = physical object/locale with meaning
- Referent must be visible
 - Not in opaque VR headsets
 - Includes location-based apps, tangible interfaces, IoT...
- Visualization that is perceived **simultaneously** with a referent is called **situated visualization**
- SitVis can use AR, but also mobile displays, embedded displays...

Embodied Visualization in Augmented Reality

- AR combines virtual + real
- Spatially registered interaction with a meaningful referent = embodied visualization

In virtual reality, we get immersive visualization

– user perceives spatial registration

Embodied Visualization

In reality, we get situated visualization – user perceives a meaningful referent

X-Ray: Referent is Hidden Inside Machine

[Mohr, Kerbl, Kalkofen, Schmalstieg, CHI 2015]

Wearable Displays: Referent is Own Body

[Grubert, Heinisch, Quigley, Schmalstieg, CHI 2015]

Collaboration: Referent is Other Person

[Kaufmann, Schmalstieg, c&g 2003]

Embodied Visualization

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Label placement
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

Label Placement: Temporal Coherence

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Label placement
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

[Tatzgern, Kalkofen, Grasset, Schmalstieg,, VR 2014]

Details on Demand: Icon Hierarchy

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Label placement
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

Adaptive Information Density Display

We present an **information density display** that selects the presented items based on **user preferences**. At the same time it avoids visual clutter by **balancing** the presented **information** against the available **screen space**.

[Tatzgern, Orso, Kalkofen, Jacucci, Ghamberini, Schmalstieg, TVCG (VR) 2016]

Focus+Context: X-Ray Vision

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Labeling placement
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

[Erat, Isop, Kalkofen, Schmalstieg, TVCG (VR) 2018]

Layout Optimization: 2D Windows

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Labeling
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

[Steinberger, Waldner, Schmalstieg,, CFG (Eurographics) 2012]

Scene Understanding: Geometry

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Labeling placement
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

[Nguyen, Reitmayr, Schmalstieg, TVCG 2016]

Scene Understanding: Semantics

- Casual association by looking
- Requires only basic visual encoding
- Requires perceptual methods
 - Legibility
 - Labeling placement
 - Details on demand
 - Focus+context
 - Layout optimization
- Requires environmental Al
 - Object detection
 - Scene understanding

Current solutions for detecting and recognizing MRZ on mobile phones either require prior knowledge, ...

Replay at 120%

Fastfill

MRZRecognition

[Hartl, Arth, Schmalstieg, VISAPP 2015]

From Visual to Embodied Analytics

- Visual analytics: "Science of analytical reasoning facilitated by interactive visual interfaces"
- Embodied Analytics in AR
 - Study complex data close to a referent
 - E.g., diagnosing a faulty machine in a factory

[Thomas, Welch, Dragicevic, Elmquist, Irani, Jansen, Schmalstieg, Tabard, ElSayed, Smith, Willet 2018]

[Cook, Thomas, 2005]

[Marriott et al., 2018]

Embodied Analytics

- Support complicated work with AR
 - E.g., diagnosing a faulty machine in a factory
- The authoring problem
 - Where does the "smart" content come from?
 - Huge semantic gap digital ← → real
- How can we close the semantic gap?
 - Teleassistance (Wizard of Oz in real life)
 - Data-driven authoring (from printed manuals)
 - Authoring by example

Authoring from Legacy Data: Printed Manuals

- Support complicated work with AR
 - E.g., diagnosing a faulty machine in a factory
- The authoring problem
 - Where does the "smart" content come from?
 - Huge semantic gap digital ← → real
- How can we close the semantic gap?
 - Teleassistance (Wizard of Oz in real life)
 - Data-driven authoring
 - Authoring by example

- Support complicated work with AR
 - E.g., diagnosing a faulty machine in a factory
- The authoring problem
 - Where does the "smart" content come from?
 - Huge semantic gap digital ← → real
- How can we close the semantic gap?
 - Teleassistance (Wizard of Oz in real life)
 - Data-driven authoring
 - Authoring by example

[Mohr, Mandl, Tatzgern, Veas, Schmalstieg, Kalkofen, CHI 2016]

Authoring by Demonstration

- Support complicated work with AR
 - E.g., diagnosing a faulty machine in a factory
- The authoring problem
 - Where does "smart" content come from?
 - Huge semantic gap digital ← → real
- How can we close the semantic gap?
 - Teleassistance (Wizard of Oz in real life)
 - Data-driven authoring
 - Authoring by example

Dieter Schmalstieg

Confluence of Visualization and Augmented

Several Deeper Questions Emerge

- When does embodiment lead to greater effectiveness?
 - Task performance, learning, engagement, adoption, or satisfaction?
- How much embodiment is needed/justified?
- Is cognitive load reduced by embodied visualization?
- Spatialization: How to map data/attributes to the environment?
- How can we design selection and manipulation techniques to work within and across a physical environment?
- What techniques work best to navigate (non-spatial) data in embodiement visualization?

[Skarbez, Polys, Ogle, North, Bowman, Frontiers AI/R 2019]

Research Agenda: Much To Do

- Important new field: Embodied Vis takes AR beyond (only) entertainment
- Embodied Vis will need
 - Better displays: vergence-accomodation conflict, FOV
 - Scalability: cloud computing, latency-hiding
 - Visualization literacy in AR: Styles, conventions, best practices
 - **Software frameworks**: the VTK/SVG/D3 of AR(?)
 - Flexible standards: "Responsive design" for AR

Is the Relationship of AR and Vis Too Complicated?

- I hope I have convinced you otherwise!
- There is a lot of common ground
- But there is also a distance to cross
- Exploring the overlap of AR and VIS can lead to radical research innovations!

All these communities should definitely interact more!

Thank You!

CREDITS

Okan Erat Anton Fuhrmann Michael Gervautz Thomas Geymayer Raphael Grasset **Eduard Groeller** Jens Grubert **Andreas Hartl** Helwig Hauser W. Alexander Isop Bernhard Kainz Denis Kalkofen Hannes Kaufmann Bernhard Kerbl Rostislav Khlebnokov **Tobias Langlotz** Florian Ledermann Alexander Lex David Mandl Peter Mohr William Ngyuen **Christian Partl Thomas Pintaric** Gerhard Reitmayr Markus Steinberger Zsolt Szalavari **Daniel Wagner** Manuela Waldner Eduardo Veas Philip Voglreiter