Holly Rushmeier
Department of Computer Science
Yale University

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and CrowdS

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

Context: Realistic Rendering

Meyer, Rushmeier, Cohen, Torrance and Greenberg, TOG 1986

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

History

Photography and Television

Computer Graphics Rendering

History: BCGR

Before Computer Graphics Rendering

Sergei Mikhailovich Prokudin-Gorski https://commons.wikimedia.org/wiki/File: https://upload.wikimedia.org/wikipedia/ Rzhev.jpg

mmons/8/81/Tvwithantenna.jpg

Producing the same array of light isn't even possible

Can't capture/display arbitrary spectra

Can't produce a continuous image

Models of perception needed just to make photography and television even possible.

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

Light Transport

 Multiple reflections/interactions expensive to compute

$$L_o(\mathbf{X}, \omega_o) = L_e(\mathbf{X}, \omega_o) + \int_{\Omega} f_r(\mathbf{X}, \omega_i \to \omega_r) L_i(\mathbf{X}, \omega_i) \cos \theta_i \, d\omega_i$$

Light Transport

 Multiple reflections/interactions expensive to compute

$$L_o(\mathbf{X}, \omega_o) = L_e(\mathbf{X}, \omega_o) + \int_{\Omega} f_r(\mathbf{X}, \omega_i \to \omega_r) L_i(\mathbf{X}, \omega_i) \cos \theta_i \, d\omega_i$$

- Formulate a solution technique with error bound (per pixel, per surface)
- Express error bound in terms of perceptual model

Tone Mapping

Many orders of magnitude

Tumblin and Rushmeier 1993 Larson(Ward), Rushmeier, and Piatko 1997

establishes
$$\Delta L_o$$

$$L_o(\mathbf{x}, \omega_o) = L_e \int f_r(\mathbf{x}, \omega_i \to \omega_r) L_i(\mathbf{x}, \omega_i) \cos \theta_i \, d\omega_i$$

$$n = \left[\left(\frac{L_{rw}^{\left(\frac{\alpha_{rw}}{\alpha_d}\right)}}{L_{d \max}} \right) 10^{\left[\frac{(\beta_{rw} - \beta_d)}{\alpha_d}\right]} - \left(\frac{1}{C_{\max}}\right) \right]^{\left(\frac{1}{\gamma_d}\right)}$$

Subsequent Work by Other Groups

(visual attention) Yee et al. 2001

Perceptually Efficient Light Transport Now Well Established Research Area

• Formulate a solution technique with error bound (per pixel, per surface)

• Express error bound in terms of perceptual model

- Accuracy of transport depends on input
- Input defined independent of image, so can't apply the same models.

Rendering Input

Material Model

Global Illumination

Source Illumination

Rendering Input-Geometry

- Representation
- Level of Detail

Representation:

Trade-off triangles and texture maps

Representation:

Trade-off triangles and texture maps

Geometry:

Can you evaluate in static image?

Still vs Rotating front to side view

Lit from above, lit from front

For all conditions, very simplified rated lower For moderate simplification, animation higher ratings than still For all but one case, front lit higher rated than lit from above.

Rendering Input

Material Model

Global Illumination

Source Illumination

Rendering Input: Material Model

Material Model

Spectral (color)

Directional (Shiny, matte, glossy, hazy)

Spatial variation (texture)

The Material Modeling Problem – Example

Same material?

Jagnow, Dorsey and Rushmeier, TOG 2004, TAP 2008

Size distribution can be estimated from classic stereology, but what about estimating non-spherical shape?

The Material Modeling Problem -- Example

Which is the slice through the same material shown in the center?

Validating Input Models

Which of the side images (left or right) looks more similar to the basic underlying texture from the reference image in the middle? reference o the one on the left o the one on the right Next 38 comparisons remaining

Lu, Garr-Schulz, Dorsey and Rushmeier, SAP 2009

Validation Experiments

Image by Flicker user motiqua, under the Creative Common Attribution 2.0 Generic License http://flic.kr/p/7TRX79

run	2-moments	5-moments	HOG Texture Space	Trivial Feature Space	Autocorrelation Feature Space
1					
	no participants approved of all tiles	5 of 8 participants approved of all the tiles	no participants approved of all tiles	no participants approved of all tiles	no participants approved of all tiles
2					
	no participants approved of all tiles	5 of 8 participants approved of all the tiles	no participants approved of all tiles	no participants approved of all tiles	no participants approved of all tiles

Example-Based Fractured Appearance

Glondu, Muguercia, Marchal, Bosch, Rushmeier, Dumont and Drettakis, EGSR 2012

Can we use exemplars and simulation for cracks?

Previous work by Glondu and Marchal -- a fast accurate fracture model

But running simulation to match crack pattern is hopeless!

Since a person is choosing the example to match, the features that matter are perceptual.

New Experiments in Person

Studying crack pattern statistics Glondu et al. 2012

New Experiments in Person

Studying crack pattern statistics Glondu et al. 2012

Rendering Input

Material Model

Global Illumination

Source Illumination

Rendering Input: Light Source

Lighting of the foreground I_F

Tan, Lalonde, Sharan, Rushmeier, O'Sullivan ,TAP 2015

(a) Campanile

(b) Street

(a) Montage 1

(b) Montage 2

(c) Mask 1 (d) Mask 2

Perceptually Based Rendering

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

Perceptual Rendering an Object

Sculptural, not just image rendering

Printed Patterns for Enhanced Shape Perception of Papercraft Models

Xue, Chen, Dorsey, and Rushmeier, 2010

Clay model in center, paper approximations on either side

- uni-stroke: >blank
- modu-stroke: >blank, >uni-stroke, >uni-cross, >uni-dot
- uni-cross: >blank
- modu-cross: >blank, >uni-stroke, >uni-cross, >uni-dot
- uni-dot: >blank
- modu-dot: >blank, >uni-stroke, >uni-cross, >uni-dot

Tactile Mesh Saliency

Grasp

Press

Touch

Lau, Dev, Shi, Dorsey and Rushmeier, SIGGRAPH 2016

which point is more salient?

learning to rank formulation

Rendering effect of wear

Reinforced 3D model

Perceptually Based Rendering

- What is perceptually-based rendering?
- History: Perception and Rendering
- Models: Transport and Input
- Hardware: 2D and 3D
- Experiments: Labs and Crowds

Crowd Sourcing

Controlled
Experiment
s
Crowds

Crowd Sourcing

Memory Colors

Xue, Tan, McNamara, Dorsey, and Rushmeier, HVEI2014

Editing images – adjusting towards memory colors

Bidirectional Texture Functions: Textures that encode variations with position and direction

A flat image that looks different from different angles.

What about filtering for classic mipmapping?

http://www.gamedev.net/page/resources/_/ technical/directx-and-xna/mip-mappingin-direct3d-r1233

Jarabo, Wu, Dorsey, Rushmeier, Gutierrez, TVCG 2014

Crowd Sourcing

Categorization Experiment

Summary of the Future of Perceptually Based Rendering

