Linear and nonlinear shape alignment without correspondences

Zoltan Kato

Department of Image Processing and Computer Graphics University of Szeged www.inf.u-szeged.hu/~kato/

Problem Statement

- Registration of image pairs is needed whenever one has to compare or align different images of an object
- Applications:
 - object recognition
 - image mosaicing
 - super resolution
 - medical image analysis, ...

Belongie, S.; Malik, J. & Puzicha, J. Shape Matching and Object Recognition Using Shape Context. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2002, 24, 509-522 Zitová, B. & Flusser, J. Image Registration Methods: A Survey. *Image and Vision Computing*, 2003, 21, 977-1000

Vandewalle, P.; Sbaiz, L.; Süsstrunka, S. & Vetterli, M. Registration of aliased images for super-resolution imaging. Proc. SPIE/IS&T Visual Comm. & Image Proc. Conf., 2006, 6077, 13-23 Periaswamy, S. and Farid, H. Medical Image Registration with Partial Data. Medical Image Analysis, 2006, 10, 452-464

Goal: find the aligning transformation

Template

Observation (deformed)

We know (identity relation):

 $\mathbf{y} = \varphi(\mathbf{x}) \quad \Leftrightarrow \quad \mathbf{x} = \varphi^{-1}(\mathbf{y})$ where $\varphi: \mathbb{R}^2 o \mathbb{R}^2, \, \varphi(\mathbf{x}) = \left[\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x})
ight]^T$

If we can observe some image features, g(x) and h(y), (*e.g.* gray-level of the pixels [Hagege-Francos2010]) that are *covariant* under the transformation, then

$$g(x) = h(\varphi(x)) = h(y)$$

- Lack of characteristic features (*e.g.* binary images, printed art)
- Changes in features (*e.g.* illumination changes, multimodality)

R. Hagege, J. M. Francos, **Parametric estimation of affine transformations: An exact linear solution**, *Journal of Mathematical Imaging and Vision* 37 (1) (2010) 1–

Classical approach

$$\arg\min_{\varphi} \|Templ. - \varphi(Obs.)\|, \text{ where } \varphi: R^2 \to R^2$$

Rotation

- Common components:
 - a. Feature space
 - Landmarks (e.g. corners, line crossing, etc.)
 - Object descriptors (e.g. moments)
 - b. Space of transformations
 - Rigid-body, *affine*, projective, elastic, …
 - c. Search strategy
 - Initialization + optimization (local minima)
 - d. Similarity metric over the feature space

Scaling

A Square

Translation

Shearing

Classical approach issues

- Optimization yields local minima
- Common assumptions:
 - deformation is close to identity
 - Landmark extraction based on local descriptors
 need for rich and characteristic radiometric information (SIFT, SURF,...)
- What if these assumptions are invalid or landmark extraction/matching is unreliable?

Solution without correspondences

Find a solution without establishing correspondences!

$$\mathbf{y} = \varphi(\mathbf{x})$$

integrate out individual point correspondences over the foreground regions \mathcal{F}_t and \mathcal{F}_o .

$$\int_{\mathcal{F}_o} \mathbf{y} d\mathbf{y} = \int_{\mathcal{F}_t} \varphi(\mathbf{x}) \left| J_{\varphi}(\mathbf{x}) \right| d\mathbf{x}$$

where the integral transformation $\mathbf{y} = \varphi(\mathbf{x}), d\mathbf{y} = |J_{\varphi}(\mathbf{x})| d\mathbf{x}$ has been applied, $|J_{\varphi}| : \mathbb{R}^2 \to \mathbb{R}$ is Jacobian determinant

This nonlinear system of two equations (for $y_i, \varphi_i(\mathbf{x}), i = 1, 2$) is not enough to solve for more than 2 unknowns!

 $J\mathcal{F}_{o}$

Generating equations

Space of allowed deformations is low dimensional (~number of free parameters)!

Basic idea: generate more linearly independent equations by making use of a set of nonlinear ω functions:

$$\mathbf{y} = \varphi(\mathbf{x}) \longrightarrow \omega(\mathbf{y}) = \omega(\varphi(\mathbf{x}))$$
Let $\omega_i : \mathbb{R}^2 \to \mathbb{R}(i = 1, \dots, \ell)$ a set of nonlinear functions. We obtain the following system of equations:
$$\int \omega_i(\mathbf{y}) d\mathbf{y} = \int \omega_i(\varphi(\mathbf{x})) |J_{i\phi}(\mathbf{x})| d\mathbf{x}$$

 $J\mathcal{F}_{t}$

Interpretation

- Intuitively, each ω generates a consistent coloring of the shapes
- The equations match the volume of the applied ω function over the shapes.
- The parameters of the aligning transformation are then simply obtained as the solution of the nonlinear system of equations.

trigonometric

How to choose the ω set?

- From a theoretical point of view, only trivial restrictions:
 - Integrable, rich enough
 - Unbiased: each equation has a balanced contribution to the algebraic error:
 - Images normalized
 - Range of ω functions normalized
- From a practical point of view: In general, we have to solve a system of integral equations
 - need to evaluate intermediate deformations
 - □ → complexity is highly dependent on image size

How to choose the ω set?

- Can it be reduced to a plain polynomial system?
 - Need to scan the images only once → considerable speed-up (complexity almost independent of the image size!)

Yes, if

- Deformation is given as a linear combination of basis functions
 - polynomial or thin plate spline deformations
 - other diffeomorphisms can be approximated by their Taylor expansion
- Adopted ω functions are polynomial [PAMI2011].

Linear (affine) deformations

• We use homogeneous coordinates. Identity relation:

$$\mathbf{y} = \mathbf{A}\mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$

Transformation matrix:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{A}^{-1} = \begin{pmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ 0 & 0 & 1 \end{pmatrix}$$
$$\int_{\mathcal{D}} \mathbf{x} d\mathbf{x} = \frac{1}{|\mathbf{A}|} \int_{\mathcal{F}} \mathbf{A}^{-1} \mathbf{y} d\mathbf{y}$$

Expanding (k=1,2):

$$|\mathbf{A}| \int_{\mathcal{D}} x_k d\mathbf{x} = (q_{k1}) \int_{\mathcal{F}} y_1 d\mathbf{y} + (q_{k2}) \int_{\mathcal{F}} y_2 d\mathbf{y} + (q_{k3}) \int_{\mathcal{F}} d\mathbf{y}$$

Computing the Jacobian

Jacobian: (absolute value of the transformation's determinant)

$$\begin{split} \mathbb{1}_{t}(\mathbf{x}) &= \mathbb{1}_{o}(\mathbf{A}\mathbf{x}) = \mathbb{1}_{o}(\mathbf{y}) \\ \mathbf{x} &= \mathbf{A}^{-1}\mathbf{y}, \, d\mathbf{x} = d\mathbf{y}/|\mathbf{A}| \\ \int_{\mathbb{P}^{2}} \mathbb{1}_{t}(\mathbf{x}) d\mathbf{x} &= \frac{1}{|\mathbf{A}|} \int_{\mathbb{P}^{2}} \mathbb{1}_{o}(\mathbf{y}) d\mathbf{y} \quad \Longrightarrow \quad |\mathbf{A}| = \frac{\int_{\mathcal{F}} d\mathbf{y}}{\int_{\mathcal{D}} d\mathbf{x}} \end{split}$$

Proposed polynomial solution

■ 2 equations but 6 unknows:

$$\int_{\mathcal{D}} \mathbf{x} d\mathbf{x} = \frac{1}{|\mathbf{A}|} \int_{\mathcal{F}} \mathbf{A}^{-1} \mathbf{y} d\mathbf{y}$$
■ How to generate 4 more linearly independent eq?

$$\mathbf{P}^{2} \rightarrow \mathbf{U} \text{sing } Invariant function \ \omega : \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$$

$$\omega(\mathbf{x}) = \omega(\mathbf{A}^{-1}\mathbf{y})$$

$$\int_{\mathcal{D}} \omega(\mathbf{x}) d\mathbf{x} = \frac{1}{|\mathbf{A}|} \int_{\mathcal{F}} \omega(\mathbf{A}^{-1}\mathbf{y}) d\mathbf{y}$$

$$\mathbf{AS} \quad \mathbf{AS} \quad \mathbf{AS}$$

 $\boldsymbol{\omega}(\mathbf{x}) = \mathbf{x} \quad \boldsymbol{\omega}(\mathbf{x}) = [x_1^2, x_2^2, 1]^T \qquad \boldsymbol{\omega}(\mathbf{x}) = [x_1^3, x_2^3, 1]^T$

Polynomial system of equations

- Polynoms are prefect choise for ω
- Separated system of (polynomial) equations:
 - Using the basic properties of the Lebesgue integral

$$|\mathbf{A}| \int x^n = \sum_{i=1}^n \binom{n}{i} \sum_{j=0}^i \binom{i}{j} q_{k1}^{n-i} q_{k2}^{i-j} q_{k3}^j \int y_1^{n-i} y_2^{i-j}$$

□ Linear deformation with polynomial ω yields standard 1st, 2nd, and 3rd order shape moments:

$$\begin{aligned} |\mathbf{A}| \int x_{k} &= q_{k1} \int y_{1} + q_{k2} \int y_{2} + q_{k3} \int 1, \\ |\mathbf{A}| \int x_{k}^{2} &= q_{k1}^{2} \int y_{1}^{2} + q_{k2}^{2} \int y_{2}^{2} + q_{k3}^{2} \int 1 + 2q_{k1}q_{k2} \int y_{1}y_{2} + 2q_{k1}q_{k3} \int y_{1} + 2q_{k2}q_{k3} \int y_{2}, \\ |\mathbf{A}| \int x_{k}^{3} &= q_{k1}^{3} \int y_{1}^{3} + q_{k2}^{3} \int y_{2}^{3} + q_{k3}^{3} \int 1 + 3q_{k1}^{2}q_{k2} \int y_{1}^{2}y_{2} + 3q_{k1}^{2}q_{k3} \int y_{1}^{2} + 3q_{k2}^{2}q_{k3} \int y_{2}^{2} \\ &+ 3q_{k1}q_{k2}^{2} \int y_{1}y_{2}^{2} + 3q_{k2}q_{k3}^{2} \int y_{2} + 3q_{k1}q_{k3}^{2} \int y_{1} + 6q_{k1}q_{k2}q_{k3} \int y_{1}y_{2}. \end{aligned}$$

Numerical implementation

• Approximate the integral: $\mathcal{D} \approx D = \{\mathbf{d}^i\}_{i=1}^n$

$$\int_{\mathcal{D}} x_k d\mathbf{x} \approx \sum_{i=1}^n \mathbf{d}_k^i$$

- Jacobian: $|\mathbf{A}| = \frac{m}{n}$ Algorithm:
 - 1. Estimating the Jacobian
 - 2. Evaluating the integrals provides the coefficient of the unknowns
 - 3. Solving the system of equations
- Time complexity: $\mathcal{O}(N)$, where N is the number of the foreground pixel

Experimental results

- Dataset: (43344 images with size of 1000 x 1000)
 - 56 different shapes

Rotations:	$0^{\circ}, 60^{\circ}, \dots, 240^{\circ}$	Shearings:	0, 0.5, 1
Scalings:	$0, 0.5, \ldots, 2$	Translations:	0, 20

- □ Filled: 28638, line drawings: 14706
- Measures of error:
 - **A**: transformation, $\widehat{\mathbf{A}}$: estimated transformation, *D*: domain

$$\epsilon = \frac{1}{|D|} \sum_{\mathbf{p} \in D} \frac{\|(\mathbf{A} - \widehat{\mathbf{A}})\mathbf{p}\|}{\|\mathbf{A}\mathbf{p}\|}$$

R: *registered*, O: *observation*, Δ: symmetric difference

$$\delta = \frac{|R \bigtriangleup O|}{|R| + |O|} \cdot 100\%$$

Experimental results

Results on the whole dataset

	Runtime (sec.)	ϵ (pixel)	δ (%)
Median	1.41	2.81	0.76
Mean	1.75	116.14	6.36
Variance	2.28	2643.22	17.02

Comparison to related approaches

- 1000 randomly chosen image
- Matlab implementation

	Runtime (sec.)	ϵ (pixel)	δ (%)
Kannala et al. [10]	107.19	50.92	21.46
Shape context [7]	57.45	_	15.17
Proposed	1.06	2.87	0.42

Kannala, J.; Rahtu, E.; Heikkilä, J. & Salo, M. A New Method for Affine Registration of Images and Point Sets. LNCS, Proc. of SCIA, Springer, 2005, 3540, 224-234 Belongie, S.; Malik, J. & Puzicha, J. Shape Matching and Object Recognition Using Shape Context. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24, 509-522

Noise sensitivity

 Geometric noise (i.i.d. additive Gaussian) over the coordinates:

$$\mathbf{y}^* = \mathbf{y} + \varepsilon(\mathbf{y}) = \mathbf{A}\mathbf{x} + \varepsilon^*(\mathbf{y}^*) \Leftrightarrow \mathbf{x} = \mathbf{A}^{-1}(\mathbf{y}^* - \varepsilon^*(\mathbf{y}^*))$$
$$\varepsilon(\mathbf{y}) \equiv \varepsilon^*(\mathbf{y}^*) = \left[\varepsilon_1^*(\mathbf{y}^*), \varepsilon_2^*(\mathbf{y}^*), 0\right]^T$$

• \mathcal{E}_1^* and \mathcal{E}_2^* are independent and normally distributed with 0 means and variance σ_1 and σ_2 respectively

Experimental results: noise

System of equation in the presence of noise:

σ=10

$$\begin{aligned} |\mathbf{A}| \int x_k d\mathbf{x} &= \int \left(A_k^{-1} \mathbf{y}\right) d\mathbf{y} \\ |\mathbf{A}| \int x_k^2 d\mathbf{x} &= \int \left(\mathbf{A}_k^{-1} (\mathbf{y})\right)^2 d\mathbf{y} + q_{k1}^2 \sigma_1^2 + q_{k2}^2 \sigma_2^2 \\ |\mathbf{A}| \int x_k^3 d\mathbf{x} &= \int \left(\mathbf{A}_k^{-1} (\mathbf{y})\right)^3 d\mathbf{y} + 3q_{k1}^2 q_{k3} \sigma_1^2 + 3q_{k2}^2 q_{k3} \sigma_2^2 \end{aligned}$$

 $\sigma =$

 Median of error measures versus σ of the noise on 1000 randomly selected images:

 $\sigma = 5$

5	σ	ϵ (pixel)	0 (%)	
	1	2.73	0.38	
	2	2.85	0.41	
	5	3.23	0.73	
	10	4.43	2.43	
	20	31.43	13.73	
	30	195.95	25.84	
20 20	50	372.64	44.29	
		•		

1 \

Hip prosthesis registration

Challenges:

- X-Ray images has a highly nonlinear radiometric distortion
 - Gray-level-based methods are unstable
 - Segmentation is straightforward
 Binary registration
- Projective mapping
 - Rigid-body transformation in 3D
 - Standard position
 Affine transformation is a good approximation

Hip prosthesis registration (fusion)

Hip prosthesis registration (fusion)

Works also in 3D!

Each ω generates 1 polynomial equation, a total of 19 •

 To ensure more numerical stability, the inverse formulation yields another 19 equations, a total of 38 Independent from transformation

$$|\mathbf{A}| \int_{\mathcal{F}_{t}} x_{a} \, d\mathbf{x} = \sum_{i=1}^{4} q_{ai} \int_{\mathcal{F}_{o}} y_{i} \, d\mathbf{y}$$
 parameters: can be precomposition (geometric moments))
$$|\mathbf{A}| \int_{\mathcal{F}_{t}} x_{a} x_{b} \, d\mathbf{x} = \sum_{i=1}^{4} \sum_{j=1}^{4} q_{ai} q_{bj} \int_{\mathcal{F}_{o}} y_{i} y_{j} \, d\mathbf{y}$$
$$|\mathbf{A}| \int_{\mathcal{F}_{t}} x_{a} x_{b} x_{c} \, d\mathbf{x} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} q_{ai} q_{bj} q_{ck} \int_{\mathcal{F}_{o}} y_{i} y_{j} y_{k} \, d\mathbf{y}$$

1 < a, b, c < 3, a < b < c

precomputed

Samples from the synthetic observations

Robustness tests

- Three types of segmentation errors were simulated
 - Missing voxels : even for 90% the results are acceptable

Robustness tests

- Three types of segmentation errors were simulated
 - Missing voxels : even for 90% the results are acceptable
 - Occlusion (Missing volume) : max. 1-2% degradation

Robustness tests

- Three types of segmentation errors were simulated
 - Missing voxels : even for 90% the results are acceptable
 - Occlusion (Missing volume) : max. 1-2% degradation
 - Surface error: 25% degradation, 70% acceptable registration results (δ <10%)

3D CT Registration Result #1

CT study: 512x512x39; 0.68x0.68x5.0; cca. 400.000 object points Delta error: 14% Computing time: below 0.1 sec Computer: Desktop PC with Intel Core2 Duo E6550 CPU @ 2.33 GHz (4 years old)

3D CT Registration Result #4

CT study: 512x512x43; 0.79x0.79x5.00 mm; cca. 460.000 object points Delta error: 32% Computing time: cca. 0.1 sec

Wrong femur position!

Keynote lecture at VISAPP 2012, Rome, Italy

Affine Puzzle: Realigning Deformed Object Fragments without Correspondences

- <u>Puzzle problem</u>: reassembling an object from its affine-deformed fragments
 - A *template* and all fragments are available
 - each fragment is subject to a different
 n-dimensional **affine** deformation
- <u>Challenges</u>:
 - partitioning of the *template* is unknown
 - correspondences between *template* parts and fragments are **unknown**
 - Segmentation and modeling errors
- <u>Solution</u>:
 - Problem is reformulated as a polynomial system of equations
 - LSE solution directly provides the aligning transformations

Affine Puzzle: Realigning Deformed Object Fragments without Correspondences

- <u>Puzzle problem</u>: reassembling an object from its affine-deformed fragments
 - A *template* and all fragments are available
 - each fragment is subject to a different
 n-dimensional **affine** deformation
- <u>Challenges</u>:
 - partitioning of the *template* is unknown
 - correspondences between *template* parts and fragments are **unknown**
 - Segmentation and modeling errors
- <u>Solution</u>:
 - Problem is reformulated as a polynomial system of equations
 - LSE solution directly provides the aligning transformations

• Tangram puzzle - 2D affine

Bone fracture - 3D rigid body

Planar homography

 $= \mathbf{H}\mathbf{x}'$ $\mathbf{x}' = \mathbf{H}$ ____

 $\frac{\partial \varphi_1}{\partial x_1} \\ \frac{\partial \varphi_2}{\partial \varphi_2}$ $\frac{\partial \varphi_1}{\partial x_2}$ \mathbf{H} $|J_{\varphi}(\mathbf{x})| =$ $(h_{31}x_1 + h_{32}x_2 + 1)^3$ $\partial \varphi_2$ ∂x_1 ∂x_2

Normalization of coordinates

I.translate the origin into the center of mass followed by II.an appropriate scaling (s_1, s_2) (resp. (t_1, t_2)) AND normalize the range of nonlinear functions!! Each equation is written in its original form

$$t_1 t_2 \sum_{m=1}^{M} \omega_i(\mathbf{Y}^m) = s_1 s_2 \sum_{n=1}^{N} \omega_i(\varphi(\mathbf{X}^n)) \left| J_{\varphi}(\mathbf{X}^n) \right|$$

as well as in three alternative forms

$$s_1 s_2 \sum_{n=1}^N \omega_i(\mathbf{X}^n) = t_1 t_2 \sum_{m=1}^M \omega_i(\varphi^{-1}(\mathbf{Y}^m)) \left| J_{\varphi^{-1}}(\mathbf{Y}^m) \right|$$

$$s_{1}s_{2}\sum_{n=1}^{N}\omega_{i}(\mathbf{X}^{n})\left|J_{\varphi}(\mathbf{X}^{n})\right| = t_{1}t_{2}\sum_{m=1}^{M}\omega_{i}\left(\varphi^{-1}(\mathbf{Y}^{m})\right)$$
$$s_{1}s_{2}\sum_{n=1}^{N}\omega_{i}\left(\varphi(\mathbf{X}^{n})\right) = t_{1}t_{2}\sum_{m=1}^{M}\omega_{i}(\mathbf{Y}^{m})\left|J_{\varphi^{-1}}(\mathbf{Y}^{m})\right|$$

Solving the system

- The system is solved efficiently by Levenberg-Marquardt algorithm.
- In our experiments, we have used a general initialization taking into account overall scaling.
- This proved to be efficient as long as rotation was within [-π/2, π/2].

$$\begin{pmatrix} \sqrt{\frac{t_1 t_2 M}{s_1 s_2 N}} & 0 & 0 \\ 0 & \sqrt{\frac{t_1 t_2 M}{s_1 s_2 N}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Fig. 5. Sample observations with various degradations.

(a) missing pixels		5%	10%	15%	20%
Shana Contart [2]	m	21.85	24.91	26.38	27.2
Shape Context [5]	σ	5.97	6.14	6.37	6.56
Drangered method	m	2.98	5.69	8.51	11.57
Proposed method	σ	4.13	5.23	6.09	6.74
(b) size of occlusion		1%	2.5%	5%	10%
Shana Contart [2]	m	3.03	3.55	4.55	6.79
Shape Context [5]	σ	4.79	4.79	5.09	7.03
December 1 and 1	m	1.41	3.40	6.19	11.27
Proposed method	σ	3.49	4.18	5.09	6.6
(c) size of disocclusion		1%	2.5%	5%	10%
Shana Contart [2]	m	3.63	4.52	6.25	9.28
Shape Context [5]	σ	5.19	5.61	6.84	7.78
Dramana di matha d	m	1.93	4.54	8.28	13.62
Proposed method	σ	4.31	5.13	6.16	7.09
(d) size of boundary error		1%	5%	10%	20%
Shana Contart [2]	m	2.86	3.78	4.68	6.92
Shape Context [5]	σ	4.72	4.83	5.04	5.92
December 1 months 1	m	0.54	1.67	2.67	4.03
Proposed method	σ	3.28	3.5	3.9	4.47

Traffic sign matching

- Strong deformations
- Segmentation errors
- Variations in the style of the objects (e.g. the STOP sign uses different fonts).

SC[1]

Thin plate spline model

0 / 2 3 4 5 6 7 8 9 0 1 3 3 4 5 6 7 8 9 0 1 3 3 4 5 6 7 8 9 0 1 3 3 4 5 6 7 8 9

Fig. 9. Sample images from the MNIST dataset and registration results using a thin plate spline model. First and second rows show the images used as *templates* and *observations* while the 3rd and 4th rows show the registration results obtained by Shape Context [3] and the proposed method, respectively.

	Runtime (sec.)			δ (%)		
	m	μ	σ	m	μ	σ
Shape Context [3]	35.02	34.43	7.58	7.86	9.40	4.71
Proposed method	10.00	9.81	1.47	7.66	8.93	4.22

Aligning multimodal prostate images

Fig. 10. Alignment of MRI (left) and US (right) prostate images using a TPS deformation model. The contours of the registered MRI images are overlaid on the US images. δ errors are 2.12% (first row) and 1.88% (second row).

Industrial inspection

- An important step in hose manufacturing is to print various signs on the hose surface.
- The quality control in an automated inspection system can be implemented by comparing images of the printed sign to its template.
- This requires the alignment of the template and observation shapes.
- The main challenges are segmentation errors and complex distortions.

The physical model

- The physical model of the contact printing procedure is as follows:
 - the stamp (basically a planar template of the sign) is positioned on the hose surface:
 - then it is pressed onto the surface.
- This procedure can be described by a sequance of transformations:

 - 1. $\mathbf{S}: \mathbb{R}^2 \to \mathbb{R}^2$ is a 2D rotation and scaling of the template (3 parameters)
 - 2. $\gamma : \mathbb{R}^2 \to \mathbb{R}^3$ maps the template's plane to a cylindric surface with radius r (1 parameter):

$$\gamma(\mathbf{x}) = \left[r\sin\frac{x_1}{r}, x_2, -r\cos\frac{x_1}{r}\right]^T$$

- 3. Then a picture is taken with a camera, which is described by a classical camera matrix $\mathbf{P}: \mathbb{R}^3 \to \mathbb{R}^2$ (6 extrinsic parameters and the focal length).
- The compound transformation $\mathbf{P} \circ \gamma \circ \mathbf{S}$ acting between a planar template and its distorted observation has 11 parameters.

Industrial inspection

 Checking mounting signs on hoses used in automotive industry

Summary

- Our method works without any
 - Iandmark, feature detection
 - optimization step
- The algorithm
 - works quite fast
 - is easy to implement
- Experimental results show
 - the accuracy of our method
 - the robustness of the method in the case of segmentation and modelling errors
- Current work: 3D elastic alignment without correspondences

3D polynomial deformations: preliminary results

3D polynomial deformations: preliminary results

Acknowledgment

- Csaba Domokos (PhD student), University of Szeged, Hungary
- Jozsef Nemeth (MSc student), University of Szeged, Hungary
- Attila Tanács, University of Szeged, Hungary
- Natasa Sladoje, University of Novi Sad, Serbia
- Joakim Lindblad, SUAS, Uppsala, Sweden
- Jhimli Mitra, Le2i-UMR CNRS 5158, Universite de Bourgogne, France
- Fabrice Meriaudeau, Le2i-UMR CNRS 5158, Universite de Bourgogne, France
- Grants:
 - PhD Fellowship of the Doctoral School in Informatics of the University of Szeged
 - Hungarian Innovation Office & Hungarian Scientific Research Fund (CNK80370)
 - Hungarian Scientific Research Fund (K75637)
 - TAMOP-4.2.2/08/1/2008-0008
 - TAMOP-4.2.1/B-09/1/KONV-2010-0005.
 - ContiTech Fluid Automotive Hungaria Ltd.

Publication

2D Nonlinear:

- 1. Csaba Domokos, Jozsef Nemeth and Zoltan Kato. Nonlinear Shape Registration without Correspondences. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, in press, 2011.
- 2. Jozsef Nemeth, Csaba Domokos, and Zoltan Kato. Nonlinear Registration of Binary Shapes. In *Proc. ICIP*, Cairo, Egypt, pp 1001--1004, Nov 2009. IEEE.
- 3. Jozsef Nemeth, Csaba Domokos, and Zoltan Kato. Recovering Planar Homographies between 2D Shapes. In *Proc ICCV*, Kyoto, Japan, pp 2170--2176, Sep 2009. IEEE.

2D Affine:

- 1. Csaba Domokos and Zoltan Kato. **Parametric Estimation of Affine Deformations of Planar Shapes**. *Pattern Recognition*, 43(3):569--578, March 2010.
- Csaba Domokos and Zoltan Kato. Affine puzzle: Realigning deformed object fragments without correspondences. In Proc. ECCV, Crete, Greece, pp 777--790, Sep 2010. Springer

3D Affine:

- 1. Attila Tanács, Natasa Sladoje, Joakim Lindblad, and Zoltan Kato. Estimation of Linear Deformations of 2D and 3D Fuzzy Objects. *Pattern Recognition*, submitted, 2012
- Attila Tanács, Natasa Sladoje, Joakim Lindblad, and Zoltan Kato. Estimation of linear deformations of 3D objects. In *Proc. ICIP*, Hong Kong, China, pp 153--156, Sep 2010. IEEE.

Software

1. Nonlinear Shape Registration without Correspondences.

- JAVA code.
- Implements planar homography, extension to other nonlinear deformations is relatively easy.

2. Affine Registration of 3D Objects.

 JAVA code with multi-threading (~0.2 sec. CPU time for megavoxel volumes).

3. Affine Registration of Planar Shapes.

• JAVA code with a direct solver (only runs under Windows).

Available at http://www.inf.u-szeged.hu/~kato/software/