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Introduction

There exist lots of camera designs:
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Introduction

Some applications:

Automatic Vehicle Navigation

Shape Computation

« Many applications require/benefit from a specific type of imaging system
« Work underlying this talk started by considering omnidirectional

systems (large field of view)
VISIGRAPP 2008 - General Imaging - Peter Sturm 4



Introduction

Videoconferencing:
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Introduction

Surveillance:
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Introduction

Surveillance:
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Introduction

Robot navigation (including obstacle avoidance):

Taylor et al. - GRASP Santos Victor et al. — ISR/IST
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Introduction

Panoramic imaging, here mosaicing:




Introduction

Panoramic imaging with omnidirectional cameras:




Introduction

Design of tailor-made imaging systems:

y#— [

Usual:

[Swaminathan et al.]



Introduction

By Julian Beever




Introduction

Different cameras “sample light rays” in different ways:

Perspective cameras:

Single viewpoint cameras:

Non-single viewpoint cameras:




Introduction

Each camera type comes with a particular model and often, particular
calibration and structure-from-motion algorithms

Main motivations for my related works:
* Propose generic camera models and calibration algorithms

 Highlight common principles underlying structure-from-motion
algorithms for different camera models

» Generalize (parts of) the structure-from-motion theory, e.g.
multi-view geometry (epipolar, trifocal and quadrifocal geometry)
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Imaging Models

Perspective cameras:

« Imaging model well-known...

« Calibration information (intrinsic parameters)
allows to perform projection: 3D points — image points)
and back-projection: image points — projection rays (lines of sight)

VISIGRAPP 2008 - General Imaging - Peter Sturm 16



Imaging Models

Single viewpoint cameras:
» Perspective projection plus radial or decentering distortion

- imaging model well-known...

- again, calibration (intrinsic parameters) allows to perform
projection and back-projection

- calibration approaches:
- plumbline calibration: use images of straight line patterns to
estimate “non-perspective” parameters
- calibration with control points: compute all parameters of
the model using bundle adjustment

VISIGRAPP 2008 - General Imaging - Peter Sturm 17



Imaging Models

Single viewpoint cameras:

» Fisheyes
- several models have been proposed (ad hoc or derived from
actual lens designs)

- e.g. equi-angular model (existence of distortion center and optical axis such
that distance of image point to distortion center is proportional to angle between
projection ray and optical axis)
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Imaging Models

Catadioptric systems (camera + mirror):

» Knowledge of mirror shape and position relative to camera, together
with calibration of camera, allows to perform back-projection

VISIGRAPP 2008 - General Imaging - Peter Sturm 19



Imaging Models

Back to single viewpoint cameras:

« Central catadioptric systems

with appropriate mirror shape and position, system has a single
effective viewpoint (cf. next slide)

practically relevant: parabolic mirror + orthographic camera,
hyperbolic mirror + perspective camera

various imaging models have been proposed:

- models whose parameters represent correlations between
mirror shape/position and calibration of camera

- unifying models for all types of central catadioptric cameras

calibration approaches:
- plumbline approaches (sometimes with closed-form solutions)
- calibration with control points: compute all parameters of
the model using bundle adjustment

VISIGRAPP 2008 - General Imaging - Peter Sturm 20



Imaging Models

mirror (hyperbolic)
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Imaging Models

Single viewpoint cameras:

« Central catadioptric system using multiple planar mirrors and cameras
(so-called Nalwa pyramid)

- perspective camera + planar mirror
= perspective camera with effective optical
center on the other side of the plane

- Nalwa pyramid: assemble pairs
(camera, mirror) such that effective optical
centers coincide

— possibility to construct a high-resolution
panoramic image
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Imaging Models

Non-single viewpoint cameras:

* Non-central catadioptric systems

- spheres, cones or any non-quadric
mirrors give non-central system:
projection rays do not intersect
in a single point

- calibration approaches have been
developed for individual systems
- example:

- mirror that leads to
equi-angular imaging model




Imaging Models

Other non-single viewpoint cameras:

 Pushbroom cameras

- Moving linear camera acquires 1D images that are stitched
together to a 2D image (motion is usually a lateral translation)

« So-called non-central mosaics

- Acquired by a camera rotating about an axis not containing the

optical center (from each image, take one or several columns of pixels
and stitch them all together)




Imaging Models

Other non-single viewpoint cameras:
« So-called multi-perspective images

- Acquired like a non-central mosaic but with camera looking inwards
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Imaging Models

All above imaging models are subsumed by the following
generic imaging model:

A pixel “watches along” one viewing ray

Camera model is lookup table, containing for each
pixel the coordinates of the associated ray

Calibration = computation of all these rays

VISIGRAPP 2008 - General Imaging - Peter Sturm 26



Imaging Models

Comments on the generic imaging model:
* is idealized (in reality, a pixel sees more than a line)

« more complete model, including radiometric properties, is
used by Grossberg and Nayar (ICCV 2001)

 other sampling than pixel-wise is possible (e.g. sub-pixel)

» conceptually, allows to consider a stereo or multi-camera
system as a single camera: union of their pixels and associated rays

VISIGRAPP 2008 - General Imaging - Peter Sturm 27
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Non-parametric calibration Basic idea

Input: images of calibration objects

Goal: compute projection ray for each pixel, in some 3D coordinate system
« General approach applicable for non-central cameras
 Variants for special cases (central and axial cameras)

VISIGRAPP 2008 - General Imaging - Peter Sturm 29



Basic idea

Non-parametric calibration

-ICRA’92,

etal

,Champleboux

[Gremban-etal-ICRA’88
Grossberg-Nayar-ICCV’'01]

Approach using known motion:

30
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Basic idea

Non-parametric calibration

Approach using known motion:
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Basic idea

Non-parametric calibration

Approach using known motion:
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Matching

Non-parametric calibration

Using color coded grid:

33

points on the planar grid
- apply this homography to compute point on grid that matches p

- for a pixel p, determine 4 closest pixels that have a match
- compute 2D homography between these 4 image points and the matched

« Sparse matches, only for center pixels of circular targets
« We interpolate, for example using an homography:

VISIGRAPP 2008 - General Imaging - Peter Sturm



Non-parametric calibration

Matching

Better: structured light, e.g. acquiring images of a
flat screen displaying a series of Gray code images
(series of vertical and horizontal stripe patterns)

« Each screen pixel has its own unique sequence
of black-white successions

« Dense matching between image and calibration
grid (screen)

VISIGRAPP 2008 - General Imaging - Peter Sturm
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General approach

parametric calibration

Non-

[Sturm-Ramalingam-ECCV’04]

Unknown motion:

VISIGRAPP 2008 - General Imaging - Peter Sturm



[Sturm-Ramalingam-ECCV’04]

General approach

parametric calibration

Non-
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Non-parametric calibration General approach
[Sturm-Ramalingam-ECCV’04]

Unknown motion:

Estimate
motions that
make points
collinear

VISIGRAPP 2008 - General Imaging - Peter Sturm 37



Non-parametric calibration General approach
[Sturm-Ramalingam-ECCV’04]

Our approach (unknown motion):

Estimate
motions that
make points
collinear
/Q1 rQ,‘I\ rQ,‘I,\ \ \
Q, R[Q,(+1Q, R"Q;|+t'Qy
Q, Q; Q —— rank < 3
Q . ,/ . ”J
K * Q4 Q4 /4x3
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Non-parametric calibration General approach

/Q1 erI\ rQ,‘I,\ \

Q, R|Q,[+tQ, R"Q;|+1"Q

Q, \0’3/ \Q’P:, —— rank < 3
\Q4 Q4 Q4 /4x3
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Non-parametric calibration General approach

/-Q1 fQ,‘I\ rQ{I,\ \

Q, R|Q,|+tQ, R’"Q;|+t'Q}

Q, \Q’?’/ \Q,s,, —— rank < 3
KQ4 < < i3

/'Q1 erI\ rQ,‘I,\ \

Q, R|Q,|+tQ, R’"Q;|+t'Q} _
Q, Q; Q: —— det=0
_\Q4 Q; Q Y,

I

4
det = Z QQ;Qy Tjx =0
k=1 a trifocal tensor
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Non-parametric calibration General approach

Q, (q Q)
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a trifocal tensor
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Non-parametric calibration

General approach

4 such tensors exist, striking out one row in turn:

/-Q1 fQ,‘I\ rQ{I,\ \
Q, R|Q,|+tQ, R’"Q;|+t'Q} _
o, [0, ) Tt
b} n”
(Q4 Q4 o /4x3

Each one has a particular structure, see the following slide for two examples
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Non-parametric calibration

General approach
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Non-parametric calibration General approach

Calibration algorithm:

(1) Take images of calibration object in different poses
(2) 2D-3D matching (pixels to points on object)
(3) Estimation of tensors, based on linear equations
4
Z Qin Qk -E,j,k =0
i,j,k=1
and taking into account the tensors’ structure (e.g. coefficients that are zero)

(4) Extraction of motion parameters from tensors:

- some can be directly read off (some rotation coefficients, cf. previous slide)
- others can be computed using orthonormality constraints on R’ and R”

(5) Put calibration grids in same 3D coordinate system

(6) Compute projection rays: for each pixel join the associated calibration points
(7) Bundle adjustment

VISIGRAPP 2008 - General Imaging - Peter Sturm 44



Non-parametric calibration General approach

Results for non-central camera
(multi-camera system, considered as single non-central camera):

VISIGRAPP 2008 - General Imaging - Peter Sturm 45



Non-parametric calibration General approach

Results for non-central camera:
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Non-parametric calibration General approach

Results for non-central camera: after constraining rays into central clusters
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Non-parametric calibration Discussion

Intermediate discussion:
» the approach is designed for 3D calibration objects
— variant for using planar calibration objects

« this approach uses exactly 3 images

- only pixels covered by all 3 images of the calibration grid are calibrated
— especially with large field of view, difficult to calibrate whole image

- results may not be highly accurate
— methods for using multiple images

 the approach allows to calibrate non-central cameras!
« BUT: if used with images acquired by central camera

- tensors are not computed uniquely (linear equation system of too low rank)
— calibration fails

— variant of the approach for central cameras and other special cases

VISIGRAPP 2008 - General Imaging - Peter Sturm 48



Non-parametric calibration Approach for central model

Results for fisheye camera

Fish Eye Lens

Distortion
correction

v
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Non-parametric calibration

Approach for central model

Results for fisheye camera
(183° field of view)

VISIGRAPP 2008 - General Imaging - Peter Sturm
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Non-parametric calibration Approach for central model

Results for fisheye camera
(183° field of view)

|
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Non-parametric calibration

Approach for central model

Results for fisheye camera
(183° field of view)

VISIGRAPP 2008 - General Imaging - Peter Sturm
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Non-parametric calibration Radially symmetric cameras

Interesting special case: radially symmetric cameras

Calibration:
Computation of distortion center and
distortion function: radius — view angle / focal length

Note: each distortion circle = perspective camera
[Tardif-Sturm-OMNIVIS'05]

VISIGRAPP 2008 - General Imaging - Peter Sturm 54



Non-parametric calibration Radially symmetric cameras

Result of distortion correction
for fisheye
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Non-parametric calibration Radially symmetric cameras

Result for homemade “Christmas camera”

VISIGRAPP 2008 - General Imaging - Peter Sturm 56



Non-parametric calibration Discussion

General approach that allows to calibrate any camera
Variants for central and axial camera modes

Variants for using planar or 3D calibration objects

How about stability?

- Possible overfitting when calibrating “not very non-central cameras” with
the general approach (result may be worse than with the central approach)

- Stability depends on:
- amount of “non-centrality”
- number of images
- accuracy of matches

- If unstable:
use more images, regularization, assumption of radial symmetry, ...

VISIGRAPP 2008 - General Imaging - Peter Sturm 57



Non-parametric calibration Discussion

« Here, pixel-wise discretization of camera model
* Any other discretization (sub-pixel or super-pixel) is possible

 Trade-off between
- potential accuracy of calibration (the finer the discretization, the better)
- potential instability (the finer the discretization, the more unknowns...)

VISIGRAPP 2008 - General Imaging - Peter Sturm 58
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Non-parametric self-calibration

Self-calibration from several translational motions:

» Ray directions can be computed up to a projective transformation

— amount of calibration knowledge is now equivalent to that of
an uncalibrated perspective camera

— any self-calibration method for perspective cameras can be
applied to complete the self-calibration

Complete self-calibration is possible by doing translational and rotational motions

VISIGRAPP 2008 - General Imaging - Peter Sturm 60



Non-parametric self-calibration

Result of distortion correction using self-calibration result:

VISIGRAPP 2008 - General Imaging - Peter Sturm
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Non-parametric self-calibration

Result of distortion correction using self-calibration result:

VISIGRAPP 2008 - General Imaging - Peter Sturm 62
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Structure-from-motion Introduction

Motivation:

« Many different SfM algorithms (pose, motion, triangulation, ...) exist,
for different camera types

« But, in principle, if calibrated cameras are considered, one single
approach for each SfM problem is sufficient, for all camera types

VISIGRAPP 2008 - General Imaging - Peter Sturm 64



Structure-from-motion Introduction

Calibration: determine, for each pixel, the
corresponding line of sight (“projection ray”)

Motion estimation: compute motion
such that matching rays intersect

VISIGRAPP 2008 - General Imaging - Peter Sturm 65



Structure-from-motion

Introduction

Triangulation / 3D Reconstruction

VISIGRAPP 2008 - General Imaging - Peter Sturm
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Structure-from-motion Pose estimation

Pose estimation of known object

Hist(A, + 1By, A+ AB,) = dy
Hist(A; + 1By , Ag+ A B3) = diy
Hist™(Ay + By, Ag+ ABg) = dag

67




Structure-from-motion Pose estimation

Pose estimation of known object

3 quadratic equations:
up to 8 solutions

Central camera: solutions come in
mirrored pairs (for a solution in front
of the camera, another one behind
exists too)

Non-central camera: no such simple
symmetry exists

With 4 points, unique solution
in general

[Chen-Chang-PAMI'04,Nistér-CVPR’04,Ramalingam-etal-OMNIVIS’04]
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Structure-from-motion Motion estimation

» Pixel matches gives
rise to ray matches
Represent rays using

PlUcker coordinates
Displacement for
PlUcker coordinates:
, R O
L 1= L 1
IR R
R, t X 6x6

Rays intersect if

(o 1d),,
| Lzﬁd 0] L, =0

6Xx6

Motion estimation: unknown scene

Essential matrix

'[t]xR R
- E=[ R (J

T 6Xx6
L) EL,=0
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Structure-from-motion Motion estimation

Motion estimation:
(1) Estimation of E (possible using linear equations: minimum 17 matches)

(2) Extraction of R and t from E (simple)

Note: scale of motion can be estimated if non-central cameras!
(but may be unreliable if cameras not very non-central)

Variants for: axial, x-slit, central cameras

[Pless-CVPR’03,Sturm-etal-Bookchapter'06]
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Structure-from-motion 3D reconstruction

Motion estimation and 3D from pinhole+fisheye

3D Model

VISIGRAPP 2008 - General Imaging - Peter Sturm 71



Structure-from-motion 3D reconstruction

Motion estimation and 3D from pinhole+fisheye

3D Model

VISIGRAPP 2008 - General Imaging - Peter Sturm 72



Structure-from-motion Epipolar geometry

Perspective epipolar geometry:
 Epipolar line of a pixel p computed via the fundamental matrix: v=Fp

Such a parametric epipolar geometry exists for some omnidirectional
cameras, e.g. para-catadioptric ones

It also exists between cameras of different types, e.g. a stereo pair
consisting of a perspective and a para-catadioptric camera

[Svoboda-etal-ECCV’98,Feldman-et-al-ICCV’05,Sturm-OMNIVIS’'02]
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Structure-from-motion Epipolar geometry

Non-parametric epipolar geometry: /\
« Consider a pixel in one image and
the associated projection ray

« Determine projection rays of other \7/
camera that cut that ray \\

» The associated pixels form
an “epipolar curve”

Here: illustration with central
cameras, but concept is
applicable to whatever
camera, i.e. also
non-central ones

VISIGRAPP 2008 - General Imaging - Peter Sturm 74



Structure-from-motion Epipolar geometry

Non-parametric epipolar geometry:

_—
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Structure-from-motion Multi-view geometry

Multi-view geometry for perspective images:

» Consider points (or other features) in images
« Which geometric constraints exist that tell if points are potential matches?

- 2 images: epipolar geometry (fundamental/essential matrix)
T
q.E q,=0

- 3or 4 imageS' trifocal and quadrifocal tensors
3

> > : : q]“jl q2";2 CT qln"."*;'ir'it T?’l 11"21-“ 1i'l'l — 0

I’l—l 2: 3”—1

Multi-view geometry for generic imaging model:

. Constralnts between pro;ect/on rays

> > Z Ll ﬂlLZ 12 " L?'z,,-j,.”T,il’g‘,g!...’-g)_” =

11=1120=1 1 =1
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Structure-from-motion Perspective multi-view geometry

Perspective multi-view geometry:
- Consider points q; in n images with projection matrices P;
They are potential matches if scalars )\f,g and a 3D point Q exist with:

ANiqi = PiQ, Vi=1---n

This can be written as:
Proa 0 0y (D) 0
Pg 0 g2 R 0 _A‘) U

\_\P.” 0 0 ’ q‘n/J \_i\n/ \O/

Existence of null-vector implies rank-deficiency of M

M is of size 3n x 4+n
— all submatrices (4+n) x (4+n) have zero determinant

VISIGRAPP 2008 - General Imaging - Peter Sturm 77



Structure-from-motion Perspective multi-view geometry

Py a1 0 - O

P, 0 qa -+ O

P-n 0 0 q-n.
M

. Determlnants of submatrlces can be written as:

; S § q1, 21 (]2 1o~ q?'l,i.”Til 22,0 iy O

Ilzl 1o=1 in=1

« where: matching tensors T depend exactly on the projection matrices P,
n = 2: fundamental (essential) matrix
n = 3: trifocal tensors
n = 4: quadrifocal tensors

« Uses of matching tensors:
- Matching constraints
- Useful for motion estimation from image correspondences
VISIGRAPP 2008 - General Imaging - Peter Sturm 78



Structure-from-motion Multi-view geometry

Multi-view geometry for generic imaging model:

* Projection rays are represented by Plicker coordinates:
- let A and B be any 2 points on a 3D line

- Plucker coordinates can be defined as:
/AéLBl — Ay 34\
AyBy — Ao By
A4Bg — ASB4
AzBy — Ao B3
Al BS _ ASBI
\A2Bl — A Bz/

- they are independent of the choice of A and B

[Sturm-CVPR’05]
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Structure-from-motion Multi-view geometry

» Consider projection rays L ; for n calibrated cameras

« For the moment, parameterize rays by two points A.f; and B.f; each.

« Pose of cameras is parameterized as
\0" 1

- Rays are potential matches if scalars \; and [¢; and a 3D point Q) exist with:

NA;, +u;B;, =P,Q, Yo=1---n

VISIGRAPP 2008 - General Imaging - Peter Sturm 80



Structure-from-motion Multi-view geometry

Rays are potential matches if scalars \; and [4; and a 3D point Q exist with:

NA; + ;B =P,Q, Vi =

* This can be written as: / Q \
/Pl A, By --- 0 0\ —A1 /0\
P‘2 0 0 . e 0 0 _.ru’l
b0 o e L

‘~ - -y

Existence of null-vector implies rank-deficiency of M

M is of size 4n x 4+2n
— all submatrices (4+2n) x (4+2n) have zero determinant

VISIGRAPP 2008 - General Imaging - Peter Sturm 81



Structure-from-motion Multi-view geometry

Pi1 Ay B 0 0

P, O 0 0 0

P” O U A-'n. Bn
M

* When developping determinants of submatrices, coordinates of
points A; and B, appear in terms of this form:

A; jBir— A; 1 Bi;
— PlUcker coordinates of L,;.;

« We obtaln matchlng constralnts of the form:

> > Z Ll i1 Lz ip " Ln-,i-n,Til,-zlg,m i, = ()

11=112=1 in=1

« Matching tensors T depend on pose matrices P;

VISIGRAPP 2008 - General Imaging - Peter Sturm 82



Structure-from-motion Multi-view geometry

 Like for perspective images, matching tensors exist for 2, 3, and 4 cameras

« Example: two views

1 0 0 0 A, B, 0 O
0O 1 0 0 A. B. 0 O
0O 0 1 0 A B 0 O
0O 0 01 A. B. 0 O

M= R, R. R t, 0 0 A, B,| 0Ofsizeds8

R21 R22 R23 t2 O O A2,2 BZ,Z
R31 R32 R33 t3 O O A2,3 B2,3
O 0 01 0 0 A. B.
M is rank-deficient, thus singular [t]
— matching constraintis: det M =L§( RXR %]LFO
N\ \p J

essential matrix
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Structure-from-motion Multi-view geometry

« Matching tensors for non-central cameras are of size 6x6x...

» Reduced parameterizations exist:
- Axial cameras: 5x5x...
- X-slit cameras: 4x4x...
- Central cameras: 3x3x...

« Matching tensors between cameras of different types are straightforward, e.g.:

- Essential matrix of a non-central and a central camera: 6x3

VISIGRAPP 2008 - General Imaging - Peter Sturm 84



Structure-from-motion Summary

Summary for structure-from-motion:

« When calibrated cameras are considered, an SfM problem (pose, motion, ...)
can be solved with one and the same algorithm, whatever the type of camera

« But: results are not optimal (e.g. in the sense of reprojection errors)
— methods are useful for embedding in RANSAC, but should be
followed by bundle adjustment if good accuracy required

« Extension of structure-from-motion theory from perspective to general
camera model

« Some missing pieces, e.g. matching tensors for line images
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Conclusions

« Generic camera model

» Generic approaches for calibration and structure-from-motion tasks
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